skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jain, Abhinav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 10, 2025
  2. Parameter-Efficient Fine-Tuning (PEFT) has become the standard for customising Foundation Models (FMs) to user-specific downstream tasks. However, typical PEFT methods require storing multiple task-specific adapters, creating scalability issues as these adapters must be housed and run at the FM server. Traditional prompt tuning offers a potential solution by customising them through task-specific input prefixes, but it under-performs compared to other PEFT methods like LoRA. To address this gap, we propose Low-Rank Prompt Adaptation (LoPA), a prompttuning-based approach that performs on par with state-of-the-art PEFT methods and full fine-tuning while being more parameter-efficient and not requiring a server-based adapter. LoPA generates soft prompts by balancing between sharing task-specific information across instances and customization for each instance. It uses a low-rank decomposition of the soft-prompt component encoded for each instance to achieve parameter efficiency. We provide a comprehensive evaluation on multiple natural language understanding and code generation and understanding tasks across a wide range of foundation models with varying sizes. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  3. Offline imitation learning (IL) refers to learning expert behavior solely from demonstrations, without any additional interaction with the environment. Despite significant advances in offline IL, existing techniques find it challenging to learn policies for long-horizon tasks and require significant re-training when task specifications change. Towards addressing these limitations, we present GO-DICE an offline IL technique for goal-conditioned long-horizon sequential tasks. GO-DICE discerns a hierarchy of sub-tasks from demonstrations and uses these to learn separate policies for sub-task transitions and action execution, respectively; this hierarchical policy learning facilitates long-horizon reasoning.Inspired by the expansive DICE-family of techniques, policy learning at both the levels transpires within the space of stationary distributions. Further, both policies are learnt with goal conditioning to minimize need for retraining when task goals change. Experimental results substantiate that GO-DICE outperforms recent baselines, as evidenced by a marked improvement in the completion rate of increasingly challenging pick-and-place Mujoco robotic tasks. GO-DICE is also capable of leveraging imperfect demonstration and partial task segmentation when available, both of which boost task performance relative to learning from expert demonstrations alone. 
    more » « less